首页> 外文OA文献 >Penalized Nonlinear Least Squares Estimation of Time-Varying Parameters in Ordinary Differential Equations
【2h】

Penalized Nonlinear Least Squares Estimation of Time-Varying Parameters in Ordinary Differential Equations

机译:常微分方程时变参数的惩罚非线性最小二乘估计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Ordinary differential equations (ODEs) are widely used in biomedical research and other scientific areas to model complex dynamic systems. It is an important statistical problem to estimate parameters in ODEs from noisy observations. In this article we propose a method for estimating the time-varying coefficients in an ODE. Our method is a variation of the nonlinear least squares where penalized splines are used to model the functional parameters and the ODE solutions are approximated also using splines. We resort to the implicit function theorem to deal with the nonlinear least squares objective function that is only defined implicitly. The proposed penalized nonlinear least squares method is applied to estimate a HIV dynamic model from a real dataset. Monte Carlo simulations show that the new method can provide much more accurate estimates of functional parameters than the existing two-step local polynomial method which relies on estimation of the derivatives of the state function. Supplemental materials for the article are available online.
机译:常微分方程(ODE)广泛用于生物医学研究和其他科学领域,以对复杂的动力学系统进行建模。从嘈杂的观测值估计ODE中的参数是一个重要的统计问题。在本文中,我们提出了一种估计ODE中随时间变化的系数的方法。我们的方法是非线性最小二乘的一种变体,其中使用了惩罚样条线对功能参数进行建模,并且也使用样条线对ODE解进行了近似。我们采用隐函数定理来处理仅隐式定义的非线性最小二乘目标函数。所提出的惩罚非线性最小二乘法被用于从真实数据集中估计HIV动态模型。蒙特卡洛模拟显示,与依赖状态函数导数的估计的现有两步局部多项式方法相比,新方法可以提供更准确的功能参数估计。该文章的补充材料可在线获得。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号